If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+36x-96=0
a = 1; b = 36; c = -96;
Δ = b2-4ac
Δ = 362-4·1·(-96)
Δ = 1680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1680}=\sqrt{16*105}=\sqrt{16}*\sqrt{105}=4\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{105}}{2*1}=\frac{-36-4\sqrt{105}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{105}}{2*1}=\frac{-36+4\sqrt{105}}{2} $
| (x+17)+(3x+1)=90 | | ((3x)x(4x)=x | | Y²2=20x | | 4=7-m | | -2(w-7)+9w=34 | | 5/10x-4=26 | | 1500+20p=4380 | | -2(x=4)+6=-3 | | 24+3.50/x=136 | | 12-18m=-14-16m | | 75+45h=210 | | -8(w+10=-5(w+10) | | -2(2+5r)+(6r-3)=6r+7r | | -1/5x=7/15 | | a+14=31 | | 3+7q=46 | | (5x+24)^=(9x-17)^ | | x/123=8 | | -2(8–x)+6=-20 | | 9=6+h | | 4-(5x-11)-3x=19+2(x-3) | | 4x−6=24x−6 | | 4-(5x-11-3x=19+2(x-3) | | 4-(5x-110-3X=19+2(X-3) | | 9x(2x-7)=0 | | 8-4r=-8 | | 42=21x-6 | | m/18=14 | | 8(2x+3)-4=16+5x+26 | | 2(x-1)=×-4 | | 2^11/8y+2^y=190 | | 9-2g=25 |